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This paper examines a number of aspects of evaluating the reaction path Hamiltonian (RPH) 
of Miller, Handy, and Adams. The reaction path is represented as a Taylor series expansion of 
mass weighted Cartesian coordinates as a function of arc length. The second (path tangent) 
and third (path curvature) coefficients in the Taylor series are important in the RPH. General 
analytical formulas for all the coefficients as explicit functions of energy derivatives are 
derived. If the Taylor series is expanded about the saddle point, special limiting formulas for 
the coefficients are required. These are obtained using L'Hospital's rule. In a local quadratic 
approximation (LQA) third and higher energy derivatives are ignored. Within this 
approximation all but the first two coefficients in the Taylor series expansion of the path are 
zero when the expansion point is the saddle point. At nonstationary points on the path the first 
three Taylor series coefficients are evaluated exactly within the LQA while the others have 
nonzero approximate values. The resulting LQA Taylor series can be summed exactly. This 
leads to a new method of stepping along the reaction path which is superior to the traditional 
Euler method and should be used whenever second energy derivatives are available. Extensions 
of this method which include third energy derivative information are also presented. Exact 
analytical formulas for the RPH coupling parameters are derived. These include simplified 
formulas for the projection matrix and its derivative. At nonstationary points, the couplings of 
the transverse vibrations to the path depend only on first and second energy derivatives and 
hence are exactly calculated in the LQA. The remaining RPH parameters depend on third 
energy derivatives as well but have nonzero approximate values in the LQA. At the saddle 
point, all of the RPH parameters depend on third energy derivatives and they are zero when 
third derivatives are ignored. In general, when the complete set of RPH parameters are 
calculated, the same energy derivative information is required at the saddle point as at 
nonstationary points, namely the gradient, the force constants, and the components of the 
third derivatives along the path tangent. It is demonstrated that severe errors can occur when 
the RPH parameters are calculated at a point near the saddle point lying on the eigenvector 
corresponding to the negative eigenvalue of the force constant matrix at the saddle point. 
These errors occur even when the exact formulas are used and are due to slight deviations of 
this eigenvector from the exact reaction path. A remedy is described. 

I. INTRODUCTION the literature.8
•9 Other problems occur when attempting to 

evaluate RPH parameters near the saddle point where the 
normalized energy gradient becomes indeterminate. Perhaps the most significant recent advance in the dy

namical study of polyatomic systems is the reaction path 
Hamiltonian (RPH) introduced by Miller, Handy, and Ad
ams. 1 This Hamiltonian is particularly well suited for use 
with potential energies obtained from ab initio calculations 
because of its focus on a very small region of configuration 
space. The growing number of dynamical studies of polyato
mic systems based on the RPH have recently been reviewed 
by Miller2 and by Truhlar and co-workers.3

-
5 Our own inter

est has been in the study of radicals, radical pairs, and biradi
cals6 using canonical variational transition state theory.? 

There are a number of interesting and important com
putational aspects of evaluating the RPH. When used with 
ab initio methods, one seeks a sufficiently accurate RPH at a 
minimum cost. The central problem has been locating the 
reaction path and making suitable corrections when one has 
strayed from it. This has received considerable attention in 

The purpose of this paper is to derive and analyze for
mulas for determining the reaction path and evaluating the 
RPH coupling parameters. These formulas differ from those 
previously used in that they explicitly involve the derivatives 
of the potential energy with respect to mass weighted Carte
sian coordinates and they can also be used at the saddle 
point. 

Besides any asthetic value there are a number of impor
tant interpretational and computational advantages such ex
act analytical formulas have over finite difference or other 
approximate techniques. Numerical accuracy problems due 
to differencing are avoided and other instabilities can be iso
lated by making explicit the implicit dependence on geome
try and energy derivatives. By showing exactly how third 
and higher energy derivatives with respect to (mass weight
ed) Cartesian coordinates enter, we can separately measure 
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their contributions to the RPH coupling parameters. A spe
cial case of this is neglecting or otherwise approximating 
third and higher energy derivatives. In this paper, e.g., we 
show that only the first and second energy derivatives are 
required to exactly compute the path curvature at nonsta
tionary points, and that inclusion of only the components of 
the third derivatives along the reaction path allows all of the 
RPH parameters to be computed exactly. Finally, Cartesian 
energy derivatives can be efficiently and accurately evaluat
ed analytically for an increasingly broad class of ab initio 
methods. 10 

Weare also able to interpret the results of a calculation 
using analytical formulas in terms of well defined concepts. 
We can separately identify contributions to the RPH param
eters due to projecting out translations, rotations, and the 
path tangent, for example. 

The bulk of this paper is divided into two major sections. 
The first addresses the problem of defining the reaction path 
and evaluating its properties. In it we represent the path as a 
Taylor series expansion in the arc length about an arbitrary 
point on the path. We give general formulas for the expan
sion coefficients in terms of the energy derivatives. The spe
ciallimiting forms of the formulas valid at the saddle point 
are discussed. In this section we also present and discuss a 
new method for following the reaction path that should be 
used when second energy derivatives are calculated. Finally 
we examine, explain, and solve the problem of numerical 
instabilities that occur when attempting to compute the path 
curvature near the saddle point. 

In the second major section we derive and discuss the 
analytical formulas for the coupling elements in the RPH. 
At nonstationary points, the resulting formulas for all the 
RPH coupling parameters are represented by the sum of two 
terms, one of which depends only on first and second energy 
derivatives and the other on some third derivatives as well 
(the components along the path tangent). The formula for 
the important couplings of the transverse vibrations to the 
reaction path are shown to depend only on second energy 
derivatives. At the saddle point the formulas give zero for all 
the RPH coupling parameters if the third derivatives are 
ignored. Given the required energy derivatives the formulas 
require negligible amounts of additional computer time. 

The last section briefly summarizes the results and of
fers some concluding remarks. 

Four appendices contain details of the derivations of the 
Taylor series coefficients (Appendices A and B), the path 
curvature near the saddle point (Apppendix C), and new 
analytical formulas for the projection matrix and its deriva
tive with respect to arc length (Appendix D). 

II. THE REACTION PATH 

A. Definition and properties 

The first task in finding the reaction path is the location 
of the saddle point or transition structure for the reaction. 
The extensive literature on this subject has been most recent
ly reviewed by SchlegeI.8

(d) We assume this structure is 
known. We do not consider here reactions for which there is 
no saddle point. 

The reaction path is a line in mass weighted configura
tion space given parametrically in terms of its arc length s. 
We represent this line by x(s) where x is a column vector 
whose components are the 3N mass weighted Cartesian co
ordinates. The arc length s is defined by 

3N 

ds2 = L dx;. (1) 
;=1 

The definition is completed by stating that x(s) is the solu
tion to the set of autonomous first order ordinary differential 
equations: 

v(s) =:v(OI(S) =:dx(s) = g/c (2) 
ds 

that approaches the saddle point from below.9 The column 
vector g is the energy gradient in mass weighted Cartesian 
coordinates 

aE 
g; =-a. ' 

'X; 

and the normalization constant is 

(3) 

(4) 

The superscript (0) in Eq. (2) indicates the zeroth deriva
tive of the normalized path tangent v with respect to s. The 
superscript (n) will mean the nth derivative. We will use no 
superscript and (0) interchangeably. 

In Eq. (2), we have arbitrarily chosen the tangent vec
tor v to lie along the steepest ascent as opposed to steepest 
descent direction. It is convenient to regard the reaction path 
as having two branches, a "reactant" branch and "product" 
branch, which join smoothly at the saddle point. The path is 
then steepest ascent for the reactant branch and steepest des
cent for the product branch. For the product branch, gin Eq. 
(2) is replaced by its negative. 

We have omitted the requirement that at the saddle 
point, v lies along the eigenvector of the force constant ma
trix corresponding to the negative eigenvalue. This result is a 
consequence of the definition. 11 

A dynamically important property of the reaction path 
is the curvature vector which is defined as 

v(ll=: dv = d
2
x . (5) 

ds d~ 

Unlike Eq. (2), Eq. (5) is the same whether the path is 
defined as steepest ascent or steepest descent. The curvature 
vector is orthogonal to the tangent v but it is not normalized. 
Instead, the scalar curvature is defined as 

K(S) = ~v(1)f v(i) . (6) 

The curvature vector can be evaluated by differentiating Eq. 
(2) with respect to s. The result is 

(7) 

where F is the mass weighted force constant martrix 

a2E ag; ago 
Fij=--=-=-'. (8) 

• ax;axj aXj ax; 

In obtaining Eq. (7) we first note that the gradient depends 
on s only implicitly through its dependence on x so that 
chain rule differentiation of g gives 
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dg 
-=F" 
ds ' 

(9) 

where Eqs. (2) and (8) have been used. Equation (7) is 
obtained by differentiating Eq. (2) with respect to sand 
using Eq. (9) in the result. 

Higher derivatives of the reaction path with respect to s 
can be obtained in a similar manner. The general formula for 
v{n) is 

,,(n) = c- I :t: [(n ~ 1 )F{n 1 - k) _ (~)c(n -k)I ],,(k>, 

( 10) 

where 

C(i+l) = ± ± (i'(l) ,,(i-l)tFO-mlv(m). (11) 
1=0 m=O tJ m 

The F(n) are given by 

F~l) = LGijkVk =)' B3E Vk. 
k 7' BXjBxjBxk 

(12) 

+ L)'L Jijklm v~O)viO)v~>' etc., 
k-rm 

where Gijk' H ijkl. and Jijklm are third, fourth, and fifth energy 

derivatives, respectively. The symbol (~) is the usual bi

nomial coefficient. The summations are over the 3N mass 
weighted Cartesian coordinates. The derivation ofEq. (10) 
is not difficult and is given in Appendix A. 

Equations (2), (7), and (10) ultimately depend only 
upon the energy derivatives evaluated at any given point in 
configuration space (excluding for the moment stationary 
points). Given any point on the path Xo = x(so), the path 
itself can be represented as a Taylor series in s expanded 
about Ko, 

xes) = x(so) + v(O)(s - so) + !,,(I)(s - SO)2 + ... 
1 

+,,,(n-l)(S_So)n +"', (13) 
n. 

where the coefficients ,,(n) depend only on energy deriva
tives evaluated at Ko. Note that ,,(n - 1) in Eq. (13) is the nth 

derivative of the path. This specification of a unique path is a 
consequence of the existence and uniqueness theorems sta
tisfied by the autonomous system [Eq. (2)]. Any point in 
configuration space lies on one and only one solution to Eq. 
(2). 

This Taylor Series representation of the path forms the 
basis of a number of numerical integration methods. The 
simple and commonly used Euler method, e.g., uses only the 
first two terms of Eq. (13). In a many-dimensional problem 
a single Euler step gives at best only a component of the path 
lying on a line. Similarly, inclusion of the first three terms of 
Eq. (13) can give no more than the projection of the path 
onto the plane formed by the vectors "0 and ,,~I). A three
dimensional path such as a corkscrew requires at least three 

independent vectors. In general. a minimum of 3N indepen
dent vectors [e.g., either 3N + 1 terms of Eq. (13) or 3N 
Euler steps 1 are required to describe the path in its full di
mensionality. 

Equation (13) refers to a Taylor series expansion ofthe 
Cartesian coordinate representation of the reaction path in 
terms of the arc length parameter s. There is another relevant 
Taylor series expansion: that of the potential energy in terms 
of the atomic Cartesian displacements. We will refer to the 
expansion of the energy truncated to second order as the 
local quadratic approximation (LQA) and this expansion 
truncated to third order as the local cubic approximation 
(LCA). These references to truncating the energy expansion 
should not be confused with truncating the Taylor series 
expansion of the path. In fact, for the path expansion within 
the LQA " and v(t) will be computed exactly and all higher 
derivatives of" with respect to s will have nonzero approxi
mate values. One can include, within the LQA, as many vec
tors in Eq. (13) as one wishes to compute by inserting the 
values of the computed gradient and force constant matrix 
into the formulas for the path derivatives. This. however, 
turns out not to be necessary in the LQA. If we adopt an 
alternative parametrization of the path, introduced by Pe
chukas, II then the corresponding infinite LQA Taylor series 
can be summed exactly. The resulting LQA formula for the 
reaction path should offer an improvement over the Euler 
method (which results from a local linear approximation to 
the energy) since a single step along this LQA path will 
include the correct path curvature at the point of expansion 
and in addition will include the full dimensionality. This 
method is discussed in Sec. II C. 

The formulas for the path derivatives, Eqs. (7) and 
(10), are exact. As we will show later, however, severe nu
merical difficulties emerge when one attempts to use them 
near the saddle point. These difficulties are not due to the 
expected roundoff errors resulting from the small denomina
tors of these equations, but are of a more profound nature. 
They are due to the fact that the reaction path itself is impre
cisely determined. As the saddle point is approached, solu
tions to Eq. (2) that are initially close to the reaction path 
will veer off sharply. The ,,(I) and higher derivatives of these 
paths will differ markedly from the correct values as a result. 
Nevertheless, the formulas for the reaction path derivatives 
at the saddle point can be obtained by a suitable limiting 
procedure. This is described in Sec. II B. 

B. Behavior at the saddle point 

It is obvious that Eq. (2) becomes indeterminate at the 
saddle point. Its limiting value can be obtained from L'Ho
spital's rule. This value can then be used to show that Eq. (7) 
also becomes indeterminate (rather than infinite) at the sad
dle point, and its limiting value can thus be obtained by 
L'Hospital's rule. By continuing this process we can obtain 
formulas for all of the reaction path derivative vectors at the 
saddle point. In general, these vectors depend upon the di
rection of approach to the saddle point, the correct values 
being obtained by approaching it along the reaction path. 

This general derivation is outlined in Appendix B. The 
limiting formulas depend only upon the energy derivatives 
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evaluated at the saddle point and will be the same regardless 
of whether the saddle point is approached from the reactant 
or product side so long as it is approached along the reaction 
path. A Taylor series expansion of the reaction path about 
the saddle point will thus encompass both the reactant and 
product branches. 

From Appendix B, the path tangent v(O)( = v) at the 
saddle point is uniquely obtained as the eigenvector of the 
force constant matrix corresponding to the single negative 
eigenvalue 

Fv - (vtFv)v = O. (14) 

This result is equivalent to Pechukas'll but is obtained in a 
rather different manner. The general formula for higher path 
derivatives v(n) at the saddle point is obtained as the solu
tion to the linear system 

M(n)v(n) = Tn' n > 0, (15) 

where the symmetric matrix M(n) is given by 

M(n)=(n+1)vt FvI+2vvt F-F, n>O. (16) 

The second term is symmetric because v is an eigenvector of 
F, Eq. (14). The vectors Tn are 

TI=P<l)v-vtF(J)vv, (17) 

Tn = ± (n)F(k)v(n - k) _ ± (n + l)c(k)v(n + I - k) 
k= I k k=2 k 

_ ± (n)v(n - k)'F(k)"" 
k=1 k 

_ nil ± (n)(k)v(/)'F(k-I)v(n-k)v, n> 1, 
k= 11=0 k I 

(18) 

where the F(i) and c(i) are given by Eqs. (8), (12), and 
(11 ). 

The matrix M(n) [Eq. (18)] is negative definite as is 
easily seen by evaluating it in a normal coordinate system, in 
which F is diagonal. Therefore, there are no problems with 
solving the linear system [Eq. (15)] and the solution is 
unique. 

Every term in Tn is proportional to third or higher ener
gy derivatives. 12 Therefore, in the LQA only the path tan
gent v [Eq. (14)] is nonzero at the saddle point. In particu
lar, the curvature vector v(1) at the saddle point, which can be 
written as 

v(1) = (2vt FvI - F)-I(p<I)V - vtp<l)vv), (19) 

would incorrectly by predicted to be zero in the LQA. In 
obtaining Eq. (19) the second term in M(1) [Eq. (16)] 
does not contribute because of the orthogonality of v and 
v(i). 

Evaluating the path curvature at the saddle point thus 
requires the components of the third derivatives along the 
path tangent p<1). These can be found by a simple finite differ
ence procedure such as 

P<I) = dF ::::: [F(so + 8s) - F(so - 8s) ]!(~s). (20) 
ds 

On the other hand, if all of the third derivatives are available 
(as might be the case when including anharmonic correc-

tions) then v(1) can be evaluated analytically using Eq. (12). 
The calculation of two extra force constant matrices to ob
tain p<1) at the saddle point is advisable for two reasons. First, 
as shown in Sec. III, knowledge of p<1) allows the analytical 
evaluation of all of the coupling elements in the RPH. Sec
ond, given this information, one can subsequently step along 
a curved path as opposed to the linear path tangent. 

These two considerations are not unrelated. If one 
chooses not to evaluate p<1), then the coupling elements can
not be evaluated at the saddle point and a straight line step 
must be taken along the eigenvector with negative eigenval
ue. At this new point, Eq. (2) is no longer indeterminate and 
the curvature can be calculated by Eq. (7) (or by a suitable 
finite difference procedure). As we show in Appendix e, this 
curvature will be incorrect. This is not a problem ofnumeri
cal precision. The curvature (and the curvature coupling 
elements) evaluated on the eigenvector approach an incor
rect limiting value as the saddle point is approached. Extra
polating coupling elements through the saddle point based 
on values calculated adjacent to the saddle point will there
fore be misleading. 

One can evaluate the reaction path within the local cu
bic approximation (LeA) to the energy at the saddle point. 
Although the Taylor series [Eq. (13)] cannot be summed 
exactly in the LeA, one can compute many path derivatives 
and therefore sum many terms in the series. The only modifi
cation to Eqs. (15 )-( 18) required in the LeA is the use of 

F (n) ~G (n-l) 0 
ij = £.. ijkVk , n> (21) 

k 

instead ofEq. (12), i.e., higher order energy derivatives are 
ignored. 

Alternatively, if only third derivatives along the path 
tangent are available, then all of the F(n) except F and p<1) 
are set equal to zero and there will still result nonzero vectors 
v(n) which will approximate the LeA values. These, too can 
be obtained from Eqs. (15)-(18). The reaction path near 
the saddle point will then be obtained by summing a number 
of terms in the Taylor series using these approximate LeA 
vectors v(n) . 

c. Reaction path following 

Reaction paths are usually followed using Euler based 
methods. Beginning at the saddle point one first steps along 
the path tangent [Eq. (14)] which is an eigenvector of F. 
Subsequent steps are along the steepest descent direction. 
These steps require only first energy derivatives. If a step is 
too large then one can use a device based on constrained 
energy minimization to return to the path. 13 

If the reason for following a reaction path is to check for 
intervening minima or barriers, or to simply visualize how a 
molecule might change during a reaction, then the Euler
type methods may work very well. For the most part, how
ever, people follow reaction paths in order to get properties 
such as transverse vibration frequencies which depend on 
second energy derivatives. We have seen earlier that the re
action path can be represented as a Taylor series expansion 
in the arc length and that except at the saddle point, every 
term in this series has nonzero values in the LQA. We seek to 
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use the second or higher energy derivatives whenever they 
are available to better follow the path. 

We will now give a method which is equivalent to sum
ming the LQA Taylor series exactly. 

Pechukas 11 has pointed out that parametrizing the reac
tion path by its arc length is but one method of representing 
it. He noted that the solution to 

dx(t) 
d't=g (22) 

gives a path identical to that obtained from Eq. (2) and that 
Eq. (22) can be solved exactly when the energy is a quadrat
ic function of the coordinates. 

The connection between Eq. (22) and Eq. (2) can be 
established by noting that 

dx dx ds 
-=--
dt ds dt 

For the t parametrization we have 

dx. 
dx. =-' dt , dt 

so that the arc length defined in Eq. (1) satisfies 

ds dxt dx 
-= 
dt dtdt' 

(23) 

(24) 

(25) 

where we have chosen the positive square root. Equation (2) 
is recovered by substituting Eq. (25) into Eq. (23) and then 
replacingdxldtby g [Eq. (22)]. 

Reaction paths are followed downhill from the saddle 
point. For this reason we will replace g by - gin Eq. (22) in 
order that progress away from the saddle point be described 
by increasing values of t. In the LQA we begin with a point 
Xc = x (t = 0), presumed to lie on the reaction path but not 
at the saddle point, and compute the first and second energy 
derivatives at that point. All higher derivatives are set equal 
to zero. The energy gradient in the LQA then becomes 

g(x) = ~ + Fo(x - Xc), (26) 

where ~ and Fo are, respectively, the mass weighted gradi
ent and force constant matrix at x = Xc. Here, the SUbscript 
zero means that the quantities are evaluated at the expansion 
point Xc which is any point on the path except the saddle 
point. 

The steepest descent path is obtained by integrating 

dx 
-= -~-Fo(x-Xc). (27) 
dt 

It is computationally and conceptually convenient to trans
form Eq. (27) to generalized normal coordinates. Letting J.. 
and U~ be the diagonal matrix of eigenvalues and orthogonal 
matrix of column eigenvectors ofFo, the solution to Eq. (27) 
can be written as 

x(t) = Xc + A(t)~, (28) 

where 

A(t) = U~a(t)U~t. (29) 

a(t) is a diagonal matrix whose elements are given as 

a ii = (e-A1l_l)IA ii 

::::: - t + ytiit 2 - !Ai;f 3 + .... (30) 

The series form is useful when t is very small. We note that an 
equation essentially identical to Eq. (28) has been used by 
Camp and King as part of a strategy for optimizing MCSCF 
wave functions with respect to orbital rotations. 15 

The relationship between the parameter t and the arc 
length along the curved LQA path can be obtained from Eq. 
(25). In order to bring this into a computationally useful 
form we first substitute Eq. (28) into the right-hand side of 
Eq. (27) and multiply the resulting equation on the left by 
u~t to get 

dx' = U6 dx = _ (J..A' + 1)&'" 
dt dt 

(31) 

where 

&', = u~t~ (32) 

is the gradient in generalized normal coordinates. Using the 
fact that x't x' = xtx, Eq. (25) becomes, upon substitution 
ofEq. (31), 

ds { '" '2 _ 2k.' } 112 
dt = ~go, e .. . (33) 

Given any step size in the arc length, Eq. (33) can be 
numerically integrated using small steps in t until the desired 
arc length is reached. The corresponding value of t is then 
used in Eq. (28) to give the path coordinates that result from 
the chosen arc length. The numerical integration ofEq. (33) 
consumes negligible computer time because no new energy 
derivatives are required. 

Figures 1,2, and 3 illustrate the differences between the 
LQA path, the Euler path, and the exact path on the model 

FIG. 1. Comparison of reaction paths based on a local linear approximation 
to the energy (straight path) and a local quadratic approximation (LQA) 
to the energy (curved path). The true reaction path is represented by a solid 
line. The point of expansion is the intersection of the reaction path with the 
- 70 contour. The potential function for all of the figures is the Muller

Brown function [Ref. 8(b) J. 
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FIG. 2. Comparison of Euler method (X's) and LQAmethod (circles) for 
following the reaction path. Note the deviation of the Euler path from the 
true reaction path in the region ofiarge curvature. 

two-dimensional potential surface of Muller and Brown.8
(b) 

In Fig. 1 the paths generated at the same expansion point are 
compared. The curved nature of the LQA path is evident. 
Figures 2 and 3 show the complete reaction paths for two 
different step sizes. In each case, the Euler path is initiated 
along the eigenvector with negative curvature and the LQA 
path is initiated along a curved path using the first three 
terms of the Taylor series [Eq. (13)]. We note the stability 
of the LQA path in Fig. 3. The LQA path smoothly rejoins 
the exact reaction path near products whereas the linear 
Euler path displays its characteristic zig-zag pattern. 

FIG. 3. Same as Fig. 2 with a larger step size for following the path. Note the 
characteristic zig-zag behavior of the Euler method. 

As discussed earlier, two-dimensional plots of reaction 
paths do not fully illustrate the fact that the LQA path ap
proximately accounts not only for curvature but for twisting 
in all dimensions. This is in contrast to the Euler method 
which is one dimensional or a three term Taylor series, 
which is two dimensional. 

It appears from Figs. 2 and 3 that all methods represent 
the reaction path near the saddlepoint reasonably well. This 
is misleading. Figure 4 shows the scalar curvature K(S) [Eq. 
(6)] calculated at each step along the reaction path for two 
step sizes differing by an order of magnitude. In each case, 
the path is initiated along the eigenvector with negative 
eigenvalue and the LQA method is used for subsequent 
steps. In this two-dimensional case, K(S) can also be regard
ed as one of the curvature coupling elements in the RPH. 
Note the large deviations from the exact values near the sad
dle point. The curvature formula is exact and we have veri
fied that there is no numerical precision difficulty is evaluat
ing the formula. The deviations must therefore be due to 
imprecisions in determining the path itself. Note also that as 
the step size is decreased the curvature appears to approach a 
smooth curve through the saddle point region, except for the 
poor values at the first steps. Figure 5 displays the same 
curve as Fig. 4 generated by first calculating the correct cur
vature at the saddle point [Eq. (19)] and taking a first step 
along the curved path instead of along the eigenvector. This 
results in qualitatively correct behavior even for fairly large 
step sizes. 

In Appendix C it is shown that as the saddle point is 
approached along the sequence of points which lie on an 
eigenvector ofF evaluated at the saddle point, the curvature 
vector calculated by Eq. (7) tends toward a value that is 
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FIG. 4. Calculated curvature of the steepest descent reaction path as a func
tion of arc length. The path is initiated from the saddle point along the ei
genvector with negative curvature. For subsequent steps the LQA algo
rithm is used. The X's refer to a step size of 0.05 and the circles refer to a 
step size of 0.005. The region shown extends about one-third of the way 
toward the reactant and product wells. 
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FIG. 5. Same as Fig. 4 except that the curvature is calculated correctly at 
the saddle point and the first step is along a curved path toward reactants 
and products. step size = 0.05. 

different from the correct limiting value. This accounts for 
the behavior shown in Fig. 4. The very first step along the 
path tangent v gives an incorrect curvature, regardless of 
how small a step size is used. The true reaction path is a 
curved path. At the saddle point the curvature is due to non
zero third energy derivatives. If one chooses the path to lie 
along the straight line defined by the second energy deriva
tives alone then there will always be a deviation. 

A solution to this problem is to leave the saddle point 
along a curved path. As described in the previous section this 
can be done by representing the path as a Taylor series ex
pansion in the LCA or the approximate LCA obtained by 
retaining only Fl). This requires the third energy derivatives, 
but at least some of them must be calculated in order to 
evaluate the curvature at the saddle point itself. 

In ab initio calculations the curvature at the saddle point 
is sometimes obtained by interpolating between values cal
culated on either side. Figure 4 suggests, however, that ap
parently reasonable interpolations can lead to significant er
rors. 

We show in the next section that in order to evaluate all 
of the RPH coupling parameters, F l) is needed at every point 
on the reaction path. This information can be used to better 
follow the reaction path at nonstationary points. The sim
plest wayl6 of doing this is to approximate the LCA path by 
computing a large number of terms in the Taylor series ex
pansion, Eq. (13). Since the steepest descent direction is 
used, the right-hand sides of Eqs. (2) and (10) should be 
replaced by their negatives. In the local cubic approximation 
where all the third derivatives are available, F(n) is given by 
Eq. (21), and by 

F(n) = o!nFl), (34) 

when only F(J) is available. 

III. THE RPH PARAMETERS 

The essential idea underlying the RPH is the replace
ment of the 3N mass weighted Cartesian displacement co
ordinates of the atoms by 3N coordinates consisting of dis
placement along the reaction path, three translations, three 
rotations, and 3N - 7 eigenvectors of the projected force 
constant matrix 

K(s) = [I - pes) ]F(s) [I - P(s)] (35) 

described by Miller, Handy, and Adams. l We have formally 
included the parametric dependence of the force constant 
matrix F and the projection matrix P on s to emphasize that 
these matrices are to be evaluated at a point xes) which lies 
on the reaction path, and that they change as s changes. 

The parameters of the RPH described in the next few 
subsections involve quantities that look like changes in nor
mal mode eigenvalues and eigenvectors with respect to a 
displacement along the reaction path. These changes can be 
thought of as the sum of two contributions: changes due to 
the changes in the force constant matrix F due to nonzero 
third energy derivatives and changes due to changes in the 
projection matrix P. In the LQA only the latter contribution 
survives. As one moves along the LQA reaction path, the 
normal mode eigenvalues and eigenvectors ofK must change 
in order to remain orthogonal to the curving path. In addi
tion, they must change in order to remain orthogonal to the 
changing subspace which corresponds to overall molecular 
rotations. 

A. The projection matrix P 

Evaluation of the RPH coupling parameters requires 
the projection matrix P and its derivative d PI ds. Miller, 
Handy, and Adams! give explicit formulas for evaluating P. 
In Appendix 0 we present an alternative construction of P 
which is easily differentiated with respect to arc length to 
give a simple analytical formula for d P Ids. 

B. Changes in transverse vibrations 

At any point on the reaction path, the 3N - 7 transverse 
vibrational modes L j are obtained as orthonormal eigenvec
tors of the projected mass weighted force constant matrix 
K(s): 

K(s)Lj (s) = (U7(s)L j (s), (36) 

where the eigenvalue (U;(s) is the square of the correspond
ing transverse frequency. The set of eigenvectors of K are 
completed by adding the six translations and rotations Vj (s) 
and the reaction path tangent v(s), all seven of which have 
corresponding eigenvalues equal to zero. 

At a nearby point on the path the L j will have changed 
due to the fact that K has changed, 

aL· Lj(s+Os):::::Lj(s) + Os--' . (37) 
ds 

The new L j (s + Os) can be resolved into its components 
along the 3N eigenvectors of K(s), 
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L;(s + 8s) 

(

3N-7 6 

;:::L;(s) + 8s ~ B;j (s)Lj (s) + j~IB;,3N-7+jV;(S) 

+B;,3N(S)V(S»). (38) 

TheB jj are the RPH coupling constants, formulas for which 
are obtained by differentiating Eq. (36), multiplying the re
sult by LJ and solving for LJ ( d LJ ds), a procedure identical 
to first order perturbation theory, 

t i = 1,3N -7, 
t dL; Lj(dKlds)L; 

B'j =Lj --= , j= 1,3N -7, (39) 
, ds w2 _ w2 

, J I=I=i, 
t dL; vJ(dKlds)L; i = 1,3N - 7, 

B' 3N 7+·=V.--=-=-----
" - J J ds w~' j = 1,6, 

(40) 

t dL; vt(dK/ds)L; 
B. 3N = V -- = , i = 1,3N - 7. (41) 

" ds w~ 

The transverse frequencies also change with motion 
along the reaction path 

dw2 

w~(s + 8s) ;:::w~(s) + __ I /)s, 
ds 

where 

(42) 

w~ = L[KL; = Li(I - P)F(I - P)L; = LiFL;. (43) 

The derivative dw~/ds is also important in the RPH. It too 
can be evaluated by first order perturbation theory, 

dW; t dK 
-=L.-L· (44) 

ds 'ds " 

In order to facilitate the evaluation of the right-hand sides of 
Eqs. (39), (40), and (41) and also to aid in theirinterpreta
tion, we differentiate Eq. (35) and then divide dKlds into 
the sum of two contributions: 

dK = Ki.QA (s) + (I _ P) dF (I - P), (45) 
ds ds 

where 

Ki.QA = - dP F(I _ P) _ (I _ P)F dP (46) 
ds ds 

involves only second energy derivatives (at nonstationary 
points). It reflects changes in K due to the changing rota
tions and path tangent which are projected out. Analytical 
formulas for P and d PI ds are given in Eqs. (D 1 ) and (D 14). 
The second term in Eq. (45) is proportional to third energy 
derivatives and is independent of changes in the rotations 
and path tangent. Since these are annihilated by (I - P), 
any matrix element over d K/ ds involving a translation, rota
tion, or path tangent will have no contribution from third 
energy derivatives. These matrix elements will be computed 
exactly in the LQA. 

At this stage we point out that all the formulas required 
to evaluate the RPH parameters analytically given the ge
ometry and first, second, and some third energy derivatives 
at a point on the reaction path have now been derived. Equa
tions (2) and (7) [or Eqs. (14) and (19) at the saddle 

point] give the path tangent and curvature, respectively; the 
coupling parameters are obtained from Eqs. (39) and (41) 
and the frequency parameters, -!w; (dw; Ids) are obtained 
from w~ and (dw~ I ds), Eqs. (43) and (44), as 

1 dw~ -----
4w~ ds 

However, deeper insight into the nature of these couplings 
can be gained from more detailed examination of the formal
ism. This is done in the following three subsections. 

C. Coupling of transverse vibrations to the reaction 
path 

A coupling of transverse modes to the reaction path 
arises through the curvature of the reaction path. The curva
ture coupling elements in the RPH are in fact elements of the 
reaction path curvature vector expressed in a basis of gener
alized normal mode eigenvectors. These coupling elements 
can be evaluated from Eq. (41) or, alternatively, from the 
orthogonality relation 

t dL; _ Lt. dv 
B j ,3N =V Ts= 'ds ' (47) 

where the curvature vector dvlds is given by Eq. (7). This 
leads to 

B j ,3N = - LTFv/c, (48) 

where v is given by Eq. (2) for the reactant, or steepest 
ascent, branch or by its negative for the product, or steepest 
descent, branch. The sign of L j is arbitrary, but should be 
chosen such that L j is a continuous function of s. 

At the saddle point, Eq. (19) should be used for dvlds. 
Using this, Eq. (47) becomes 

B' 3N = - V(2vtFvI - F)-1 (dF _ vt dF VI)V, 
',' ds ds 

(49) 

At any nonstationary point on the reaction path, the 
curvature coupling elements are thus given simply as matrix 
elements over the unprojected force constant matrix. They 
are completely determined from second energy derivatives 
alone. In contrast, Eq. (48) is invalid at the saddle point and 
the curvature coupling elements must be determined from 
Eq. (49) which requires limited third derivative informa
tion. 

We note from Eq. (48) or from Eq. (7), that if the reac
tion path tangent v is an eigenvector of the unprojected force 
constant matrix, then the curvature of the reaction path van
ishes (as do all of the curvature coupling elements). This is 
the gradient extremal condition discussed by Ruedenberg.14 
The gradient extremal condition is equivalent to the curved 
reaction path being at a point of inflection, and implies a 
local dynamical decoupling of the reaction path from the 
transverse degrees of freedom. 17 Since the reaction path tan
gent is shown to be an eigenvector ofthe force constant ma
trix at the saddle point, it is tempting to suggest that the 
gradient extremal condition becomes satisfied in the vicinity 
of the saddle point when approaching it along the reaction 
path. This is not true. As long as third energy derivatives are 
nonzero at the saddle point, the reaction path tangent will 
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immediately veer away from the eigenvector of the force 
constant matrix as one steps off the saddle point. 

D. Mode-mode couplings 

The coupling between two transverse vibrational modes 
is given by Eq. (39). Rearranging this expression and substi
tuting Eqs. (45) and (46) for d K/ ds gives 

(w2 _ W~)Bi. = 0 dK L. = 0 dF L. 
, J g J ds' J ds ' 

_ Lt dP FL. _ OF dP L. (50) 
J ds ' J ds " 

where dP/ds is given by Eq. (DI4). The first term is the 
contribution from the component of the third derivatives 
along the path tangent. The remaining two terms are the 
contributions due to the separate couplings of L; and Lj to 
the translations, rotations, and path tangent. This can be 
seen more clearly by writing d PI ds in terms of orthonormal 
translation-rotation vectors: 

dP ~ ( dvt dVk t) -= 4.J Vk --+--Vk , 
ds k=1 ds ds 

(51) 

where V7 = L3N = v. Equation (50) then becomes 

+ B3N_6+k,;vtFLj)' (52) 

where 

dvt dLT 
B3N - 6 + k ,; =--L; = ---Vk (53) 

ds ds 

are the couplings between L; and the translations, rotations, 
and path tangent. Note that in the LQA (dF/ds = 0), the 
mode-mode couplings are still nonzero due to these separate 
couplings of L; and Lj to the translations, rotations, and 
path tangent. 

At the saddle point, only the first term of Eq. (52) sur
vives. This is not because the couplings to the translations, 
rotations, and path tangent are zero, for they are not. Rather 
it is due to the fact that the eigenvectors of K are also eigen
vectors ofF so that off-diagonal elements ofthe form vtFL; 
are equal to zero. 

E. Diagonal couplings 

The diagonal elements of Bi,i = (d L;lds)Lj are identi
cally zero because of the fact that L; is normalized for all s. 
When the classical RPH is transformed to the harmonic ac
tion-angle variables, terms involving the transverse-frequen
cy derivatives appear. It is customary to define the diagonal 
coupling elements to be these terms!: 

1 dw; 1 dW; 
B .. = ---= --- (54) 

II 2w; ds 4ClJ; ds 

Using Eqs. (44), (45), and (46) and rearranging gives 

- 4ClJ2B .. = 0 dF L. _ O(dP F + F dP)L. (55) 
'" 'ds' 'ds ds' 

in close analogy to Eq. (50) for the off-diagonal couplings. 

Similar to Eq. (50) the second term in Eq. (55) also 
vanishes at the saddle point. 

IV. SUMMARY AND CONCLUSIONS 

The complete evaluation of the RPH consists of three 
distinct steps: (1) Locate the saddle point for the reaction, 
(2) determine the reaction path, and (3) compute the RPH 
parameters at selected points along the path. In this paper we 
have derived analytic formulas that are relevant to the sec
ond and third steps. For the most part, it is not advocated 
that anything new be calculated, simply that available infor
mation be utilized to the fullest extent. 

Given the gradient of the energy and the matrix of sec
ond derivatives, F, at some nonstationary point on the reac
tion path, e.g., a calculation can proceed as follows. The 
reaction path tangent, v is constructed as the normalized 
energy gradient. Knowledge of the path tangent in conjunc
tion with the molecular geometry in Cartesian coordinates 
and the atomic masses are then used to construct the projec
tion matrix P. The projected force constant matrix K, 
formed from F and P, is then diagonalized to give the gener
alized normal modes L; and the corresponding frequencies 
w7. The curvature of the reaction path, expressed in Carte
sian coordinates can be evaluated from F and v. The normal 
mode eigenvectors can then be used to calculate the RPH 
curvature coupling elements. 

For some dynamical models, or for qualitative studies of 
energy transfer, this is all the information that is required. In 
other applications, one also seeks to calculate the mode
mode coupling elements and the diagonal (frequency deriv
ative) coupling elements. These can be approximately evalu
ated using the above information (i.e., within the LQA). 
These coupling elements involve changes in normal mode 
eigenvectors and eigenvalues along the reaction path. These 
eigenvectors change with arc length s for two reasons. The 
first is that the normal mode eigenvectors are required to 
remain orthogonal to the reaction path tangent and 
(through the projection matrix) to the vectors correspond
ing to overall molecular rotations. Since the rotation deriva
tives depend only on geometry and atomic masses, and the 
reaction path curvature is known, this portion is correctly 
evaluated within the LQA. The second reason these eigen
vectors change is that F itself changes with s due to nonzero 
third energy derivatives. This effect is absent within the 
LQA. 

Finally, the force constant matrix can be used to help 
follow the reaction path. Knowledge of the reaction path 
curvature suggests a Taylor series representation of the path 
carried to third order. One can, in fact, do better than this. 
Within the LQA, this series representation of the path is 
correct through third order, but has a nonzero contribution 
at all orders. Summing this series to all orders is equivalent to 
solving the differential equation for the steepest descent path 
within the LQA which is easily done. The resulting LQA 
path is not only a curved path, but like the true reaction path 
it twists (like a corkscrew) through the many-dimensional 
space. 

If one wishes to calculate the mode-mode and frequen
cy derivative coupling constants exactly, then limited third 
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energy derivative information is required. The required mao 
trix is the Cartesian third derivatives contracted with the 
reaction path tangent, or alternatively, the force constant 
matrix differenced along the reaction path. In calculating 
these coupling constants, it is advised that the LQA portion 
be evaluated analytically, and the differencing be limited to 
the third derivative contribution. This is in contrast to differ
encing generalized normal mode eigenvectors which is 
equivalent to differencing both the second order and third 
order contributions to the coupling constants. 

If the mode-mode and diagonal coupling elements have 
been calculated, then the limited third derivative informa
tion mentioned above can also be used for the following the 
path. The differential equation defining the path cannot be 
solved in this case, but the Taylor series representation of the 
path can be summed to arbitrary order by a straightforward 
algorithm. 

The saddle point on the potential energy surface re
quires special consideration. In the vicinity of the saddle 
point, the norm of the gradient vector approaches zero and 
its direction becomes undefined. One therefore expects to 
have numerical difficulties as these quantities begin to ap
proach the resolution of the calculation procedure. We have 
shown that the difficulties are in fact more insidious than 
this. The computed RPH parameters are always slightly in
correct if one is not exactly on the reaction path, but this 
difficulty becomes more profound in the vicinity of the sta
tionary point. In fact, if one steps off the saddle point on the 
tangent to the reaction path and computes the curvature 
coupling elements at the new point, these elements will be 
incorrect. This is true regardless of the step size and regard
less of the numerical precision. In order to correctly calcu
late the curvature adjacent to the saddle point, one must 
leave the saddle point on a curved path. 

Equations valid at the saddle point were obtained by a 
limiting procedure based on L 'Hospital's rule. At the saddle 
point, second derivatives are required simply to define the 
path tangent, in contrast to first derivatives at nonstationary 
points. We have also shown that third derivatives are re
quired to obtain the reaction path curvature and the curva
ture coupling constants at the saddle point. This limited 
third derivative information (the same as that described 
above) is also sufficient to exactly compute all of the cou
pling constants at the saddle point. Given these third energy 
derivatives at the saddle point, one can evaluate a few or 
several terms in the series representation of the reaction path 
to generate a subsequent step toward reactant or product. 

In summary, we have shown that the same information 
is required at any point on the reaction path if one wishes to 
evaluate the entire RPH. This includes the Cartesian coordi
nates ofthe atoms, the atomic masses, the potential energy, 
the energy gradient, the matrix of second derivatives, and 
limited third derivatives (second derivatives differenced 
along the reaction path direction). We have shown how all 
of this information can be straightforwardly used to help 
map out the reaction path. 
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APPENDIX A: DERIVATION OF v(n) AT 
NONSTATIONARY POINTS 

We begin by rewriting Eq. (2) as 

ev = ± g, (AI) 

where e is given by Eq. (4). The positive sign is used for 
steepest ascent paths and the negative for steepest descent 
paths. 

We differentiate Eq. (AI) n times to get 

dnev = ± g(n). (A2) 
dsn 

The left-hand side ofEq. (A2) can be written as a binomial 
expansion, 

d nc: = ± (n)e(n - k)V(k) 
ds k=O k 

(A3) 

= ev(n) ± Q(n), (A4) 

where 

Q(n) = ± nil (n)e(n-k)v(k) = ± nil (n)e(k)v(n-k). 
k=O k k= I k 

(A5) 

The form [Eq. (A4)] has completely isolated v(n) as we 
show below. 

The derivatives of e can also be written as a binomial 
expansion. We first note that the equation for e(l) is, by differ
entiatingEq. (4) and usingEq. (9), 

e(l) = ± vtFv. (A6) 

Differentiating this equation, i times gives 

CU+ I) = 

where the dagger refers to the steepest ascent branch [Eq. 
(11)]. 

We note that the highest derivative of e that appears in 
Eq. (A5) ise(n). From Eq. (A7) with i + I = n we see that 
the highest derivative of v that appears is v(n - I) . Similarly 
we also note that the highest derivative of F that appears in 
c(n) is F(,,-I), which from Eq. (12) depends at most on 
V(,,-2). Therefore, the sum in Eq. (A5) depends at most on 
v(n - I) so that v(,,) is completely isolated in Eq. (A4). 

We now differentiate the right-hand side ofEq. (AI) n 
times, 

d"g d,,-IFv 
± g(n) = ± ds" = ± ds"-I 

= ± "il (n -1)F(n-I-k)v(k), 
k=O k 

(AS) 

where we have used Eq. (9). By arguments similar to those 
of the above paragraph we see that v(n - I) is the highest 
derivative ofv that appears in Eq. (AS). 
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The final result is obtained by substituting Eq. (A4) and 
Eq. (A8) into Eq. (A2) and solving for v(n), 

v(n) = c-I nil [ ± (n - I)F(n-I-k) 
k=O k 

_(~)c(n-k)I]v(k). (A9) 

Theright-handsideofEq. (A9) dependsatmostonv(n-O. 
It is helpful to clarify the signs in Eq. (A9), i.e., the 

steepest descent form vs the steepest ascent form. This is 
most easily done by substituting Eq. (A7) into Eq. (A9) to 
obtain the expanded form 

v(n) = ± c-I {nil (n - I)F(n - 1- k)V(k) 
k=O k 

x ± (n - k - 1)(1 ) 
m=O 1 m 

X v(n - k - I - /)tFu - m)v(n)v(k)}. (AlO) 

Although not computationally useful, this form shows that 
the formulas for the steepest descent vectors are just the op
posite signs ofthose for the steepest ascent vectors. This does 
not mean that the values of the vectors are opposite. In fact, 
by simply replacing ds by - ds everywhere we see that v(n) 
(steepest descent) equals v(n) (steepest ascent) if n is odd 
and equals - v(n) (steepest ascent) if n is even. 

APPENDIX B: DERIVATION OF v(n) AT THE SADDLE 
POINT 

We begin by borrowing from the results of Appendix A. 
Substituting Eq. (A4) into Eq. (A2) we have 

cv(n)±Q(n) = ±g(n), (Bl) 

where Q(n) is given by Eq. (A5) when n > O. Using Eq. 
(A7), this can be written as 

Q(n) = nil kil ± (n)(k - 1) (I) 
k= I 1=0 m=O kIm 

Xv(k-I-/)tFU-m)v(m)v(n-k>, n>O (B2) 

and from Eq. (A2), 

Q(O) = O. (B3) 

The formula for g(n) isgiveninEq. (A8). We rearrange Eq. 
(BI) to give 

even) = ± [g(n) _ Q(n)], (B4) 

and note from Appendix A that the right-hand side of Eq. 
(B4) depends at most on v(n - 1) and energy derivatives. For 
example, taking n = 1 we have 

cv(l) = ± [Fv - (vtFv)v] (B5) 

using Eqs. (11) and (B2). We wish to examine the behavior 
of Eq. (B4) as the saddle point is approached. 

Since g and hence c approach zero as the saddle point is 
approached, we see from Eq. (B4) that v(n) has a finite 
value at the saddle point if 

lim even) = ± [gan) - Qo(n)] = 0, .-0 (B6) 

where ~n) and Qo(n) are the limiting values of these quanti
ties [Eqs. (A8) and (B2)] at the saddle point. 

Equation (B6) is the fundamental equation for deter
mining the limiting values of the path derivatives as the sad
dle point is approached along the path. If g(n) = Qo(n) then 
not only are we assured of a finite value for van) but this 
equation can be solved for van - 1). We only need to deter
mine that the solution is unique in order to show, by induc
tion, that all van) are finite and uniquely determined by Eq. 
(B6). 

Equation (B6) is equivalent to using L 'Hospital's rule 
to obtain van - I>, the limiting value of v(n - I) as the saddle 
point is approached along the reaction path. Consider, e.g., 
the path tangent v(O). Applying L 'Hospital's rule to Eq. (2) 
gives 

Vo =lim~= (dg
) /.(dC) 

.-0 c(s) ds .=0 ds .=0' 
(B7) 

If the approach to the saddle point is taken to be along dx/ 
ds = v then we obtain Eq. (14) by substituting Eqs. (A6) 
and (A8) (for n = I) into Eq. (B7) and rearranging. We 
recognize Eq. (14) to be the right-hand side of Eq. (B5) 
evaluated at the saddle point. Since this is zero [by Eq. 
(14»). Eq. (B6) shows that vel) has a finite value at the 
saddle point. 

Equation (14) has only one solution (the eigenvector 
corresponding to the single negative eigenvalue ofF evaluat
ed at the saddle point) that is consistent with the definition 
of the reaction path. Hence Vo is uniquely determined as a 
solution to ~ I) = Qo ( 1) which, as we have seen, is equiva
lent to determining Vo by L 'Hospital's rule. In the same way, 
it is not difficult to show that, in general, solving 

gi,n+ 1) = Qo(n + 1) (B8) 

for van) is equivalent to determining it by applying L 'Hospi
tal's rule to Eq. (B4). 

The solution [Eq. (15)] is obtained by replacing n by 
n + 1 in Eqs. (A8) and (B2) and then substituting them 
into Eq. (B8) and solving for van). The solution for n> 1 is 
unique because the matrix M(n) defined in Eq. (16) has no 
zero eigenvalues. 

APPENDIX C: BEHAVIOR OF THE PATH CURVATURE 
NEAR THE SADDLE POINT 

In Appendix B we derived the correct limiting values of 
the path derivatives van) as the saddle point is approached 
along the reaction path. In this Appendix we investigate the 
behavior of the curvature vector v(l) as the saddle point is 
approached along a different path, namely along the eigen
vector of Fo, the force constant matrix at the saddle point, 
that corresponds to the single negative eigenvalue. 

The significance of this lies in the fact that the very first 
step away from the saddle point is usually taken along this 
eigenvector. We show that along this eigenvector, vel) tends 
toward a finite limiting value at the saddle point that is incor
rect. Thus, regardless of how small the step size is taken or 
with what numerical precision vel) is calculated, one will al-
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ways get the wrong answer for ,,(1) and for the RPH coupling 
parameters derived from it. Since the higher ,,(n) depend on 
,,(I), they too will be in error. The correct values can only be 
obtained by stepping along the actual curved reaction path. 

It is important to understand the distinction between 
the reaction path and the straight line path defined by the 
eigenvector. Although the two paths "meet" at the saddle 
point and (as we shall see) share the same path tangent "0 at 
the saddle point, only the reaction path is a solution to Eq. 
(2). The quantity ,,(1) is the curvature of the solution to Eq. 
(2) which passes through any point of interest. If this point 
lies on the reaction path then ,,(1) will be the curvature of the 
reaction path. If the point lies elsewhere, such as on the ei
genvector, then ,,(I) will not be the reaction path curvature. 
Each point in the sequence on the eigenvector path will cor
respond to a different solution to Eq. (2) whereas each point 
on the reaction path corresponds to the same solution to Eq. 
(2). 

We define the eigenvector path as 

x(a) =a"o, (Cl) 

where "0 is the reaction path tangent at the saddle point and 
a is the "arc length" or mass weighted distance from the 
saddle point. 

In order to compute the curvature ,,(1) at the point x(a) 
we need the gradient and force constant matrix evaluated at 
this point. We obtain these by first expanding the energy in a 
Taylor series about the saddle point x = 0: 

E(x) = ~ xtFoX + ~ L L L Go X;XjXk + .... 
2 6 ; j k ~ 

(C2) 

The gradient and force constant matrix at an arbitrary point 
near the saddle point are then 

Note that we have divided out the common factor a in the 
numerator and denominator. In the limit of small a, Eq. 
(ClO) becomes "0' This can be seen by setting a = 0 in the 
right-hand side ofEq. (ClO) and using Eq. (14) to simplify 
the result. Thus as the saddle point is approached along x (a) 
the path tangent approaches the correct value. 

The value of the path curvature at x(a) is obtained by 
substituting Eqs. (C8), (C9), and (ClO) into Eq. (7). We 
will not reproduce this messy formula here. We note, how
ever, that expanding the numerator of this result in powers 
of a gives the leading term as 

which is zero by Eq. (14). This leaves a common factor a in 
the numerator and denominator which can be divided out as 
it was in Eq. (CIO). Setting a = 0 in the result then gives the 
limiting value of the curvature as 

1 
g; = ~ FOijxj + 2" ~ Lk GOijkXjXk + '" (C3) 

J J 

and 

Fij =Foij + L GOijkXk +.... (C4) 
k 

Substituting Eq. (Cl) into Eqs. (C3) and (C4) gives 

and 

g;(a) = a[ ~ Fo,jvoj + ~ a ~ ~ G~kVOjVOk + ... ] 
(C5) 

Fij(a) =Foij +a L GOijkVOk + .... 
k 

(C6) 

In matrix form these can be written as 

g(a) = a(Fo"o + ~aF61),,0 + ... ) (C7) 

and 

F(a) = Fo + aF61) + ." , (C8) 

where F61) is the component of the third derivatives along 
the path tangent "0 [Eq. (13)] evaluated at the saddle point. 

Substituting Eq. (C7) into Eq. (C5), the normalization 
constant at x(a) becomes 

c(a) = a{,,;t;F~"o + ~a,,;t; (FoF61
) 

+ F61)Fo)"0 + ... }I 12, (C9) 

where we have retained terms only through the first power in 
a in the expression inside the brackets. 

The path tangent evaluated at x(a) is, by substituting 
Eqs. (C7) and (C9) into Eq. (2), 

(ClO) 

lim ,,(J)(a) = [F6I)Fo - (,,;t;F61)"0)Fo 
a-O 

+ WoF61) - !(,,;t;F61)"0)F0]"oI,,;t;F~"0. 
(Cll) 

This result is not the same as Eq. (19) although it also de
pends on third energy derivatives. It is therefore incorrect. 

APPENDIX D: THE PROJECTION MATRIX 

The projection matrix P can be defined as 

P=R+'V'Vt, (DI) 

where 
6 

R= L V;V;' (D2) 
;=] 

Here the,,; are six orthonormal column vectors in the mass 
weighted Cartesian coordinates corresponding to overall 
translations and rotations and" is the unit tangent to the 
reactionpathdefinedinEq. (2). The V; depend on geometry 
(and masses) alone and are therefore constructed indepen-
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dently of energy considerations. Excluding the saddle 
point, 18 the path tanget 'V is proportional to the energy gradi
ent and therefore has no component corresponding to trans
lation and rotation in the absence of external forces. I We 
therefore focus on constructing R, the contribution to P due 
to translations and rotations. 

Our procedure will be as follows. We will first define six 
basis vectors which are not orthonormal but which span the 
translation-rotation subspace in Cartesian coordinates and 
have no components in the internal coordinate subspace. 
These will then be converted to mass weighted Cartesian 
coordinates and orthogonalized. R is then constructed from 
these orthogonalized vectors. The result [Eq. (D9) below] 
will involve only the basis vectors. The derivative of R will 
involve only the mass weighted basis vectors and their de
rivatives, which are readily obtained. 

We choose as basis vectors the three translation displa
cements along each of the three Cartesian axes and the three 
infinitessimal displacements corresponding to rotations 
about these axes. MUltiplying each of these vectors by the 
diagonal matrix of the square roots of the masses gives the 
basis vectors bi in the mass weighted coordinates 

,Jm; 0 0 

0 ,Jm; 0 

0 0 ,Jm; 
b l = , b2 = , b3 = 

~mN 0 0 

0 ~mN 0 

0 0 ~mN 

0 0 
,Jm;ZI ZI 

-JiilIYI -YI 
b4 = = 

0 0 

~mNzN ZN 

-~mNYN -YN 

M 0 0 0 -~mizi 

M 0 ~mizi 0 

M -~miYi ~mixi 
8= 

~mi(y: +z:) -~mixiYi 

~mi(x; +z:) 

in the nonmass weighted Cartesian coordinates. M is the 
total mass. We note from Eq. (DlO) that the overlap of a 
translational basis vector and a rotational vector is propor
tional to a component of the center of mass position, e.g.,19 

-,Jm;ZI -ZJ 
0 0 

,Jm;xI XI 

bs = = (D3) 

-~mNzN -ZN 

0 0 

~mNxN X N 

JiilIYI YI 
-,Jm;XI -XI 

0 0 

b6 = = 

~mNYN YN 

- .JmNXN -XN 

0 0 

where Xi' Yi' and Zi are the Cartesian coordinates of atom i 
and Xi' and Yi , and Zi are the mass weighted Cartesian 
coordinates. We let W be any 6X6 transformation matrix 
which produces orthonormal Yi'S from the basis vectors bi : 

y=bW, (D4) 

where Y is the 3N X 6 matrix whose columns are the Yi and b 
is the corresponding matrix of basis vectors. The matrix R 
then becomes 

(D5) 

Since any real matrix W can be written as the product of a 
symmetric matrix and an orthogonal matrix, Eq. (D5) 
shows that only the symmetric part of W contributes to R. 
Therefore, without loss of generality W can be regarded as 
symmetric. From the orthonormality condition we have 

yty = W't],'t],W = I, (D6) 

or, taking W to be symmetric (W = wt ): 
W2 = WWt = 8-1, 

where 8 is the 6 X 6 "overlap" matrix 

8 =btb. 

R thus becomes 

R=b8- lbt . 

(D7) 

(D8) 

(D9) 

Using the definitions of the bi [Eq. (D3)] 8 can be 
written as 

~miYi 

-~mixi 

0 

-~mixizi 

-~miYizi 

~mi(x: + Y:) 

bibs = - 2: mizi = - Mzc .m ., 
i 

(DlO) 

(Dll) 

and that the rotation-rotation overlaps give elements of the 
moment of inertia tensor in center of mass coordinates. The 
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matrix S is therefore diagonal if one chooses the coordinate 
origin to be the center of mass and the x, y, and z axes to lie 
along the principal inertial axes. This, however, is not neces
sary.20 

The derivative of R with respect to motion along the 
path tangent is, by differentiating Eq. (D9) and using Eq. 
(D8): 

~:=Q+Qt, (DI2) 

where 

Q = (I - R) db S-lbt . 
ds 

(DB) 

The derivative db/ds is easily constructed. The first three 
columns are zero and the last three involve only the deriva
tives of the mass weighted Cartesian coordinates with re
spect to s. These are just elements of the path tangent v [Eq. 
(2) ] . In other words if the mass weighted coordinates in b4 , 

bs, and b6 are replaced with the corresponding elements of v, 
the result is (db~ds), (dbs/ds), and (db~ds). 

Using Eqs. (D1), (D2), and (D9) we have for the de
rivative of the projection matrix 

dP =Q+Qt+ v
dvt + dv vt, (DI4) 

ds ds ds 
where (dv / ds) is the path curvature vector given by Eq. (7). 
At nonstationary points Eq. (D 14) involves at most second 
energy derivatives and is therefore computed exactly in the 
LQA. At stationary points Eq. (DI4) is not needed. 
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